JACCARD COEFFICIENT CALCULATIONS

Maria Ingold
12693772
Unit 5
Machine Learning
University of Essex Online
25 November 2024

CONTENTS

3
3
4
4
5
5
5
6
6
6
6
6
6

JACCARD

The table shows the pathological test results for three individuals.

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Υ	N	Р	N	N	Α
Mary	F	Υ	N	Р	Α	Р	N
Jim	M	Υ	Р	N	N	N	Α
	Symmetric	Asymmetric	Asymmetric	Asymmetric	Asymmetric	Asymmetric	Asymmetric

Best guess:

• Gender: M (Male), F (Female)

• Fever: Y (Yes), N (No)

• Cough: N (Negative), P (Positive)

• **Test-**1,2,3,4: N (Negative), P (Positive), A (Absent – no result?)

Symmetry:

• Symmetric: No preference as to mapping to 0 or 1, same weight, like M/F.

• Asymmetric: Not equal importance. Preference to map.

Ignore Symmetric.

Jaccard Coefficient

Jaccard Coefficient measures similarities between two sets.

- Asymmetric data. Outcomes not equal importance.
- Binary data
- Range: 0 to 1
- 0: No common elements between two sets (disjoint)
- 1: Identical sets.

The Jaccard Coefficient is defined as

 $J(A,B) = |A \cap B| / |A \cup B|$

J(A,B) = intersection divided by union.

This is also represented as:

$$J = f_{11} / (f_{01} + f_{10} + f_{11})$$

Intersection and Union

- Intersection is common
- **Union** is when at least one of the sets has element.
 - o 1 means attribute present
 - o 0 means attribute absent

Jaccard Distance

The assignment and lecturecast use the Jaccard Distance formula, even though it says Jaccard Coefficient.

Jaccard Distance is represented as:

$$d_J = f_{01} + f_{10} / (f_{01} + f_{10} + f_{11})$$

or
$$d_J(A, B) = 1 - J(A,B) = (|A \cup B| - |A \cap B|) / |A \cup B|$$

Not all binary. Group:

Fever: N (0), Y (1)Cough: N (0), P (1)

• **Test-**1,2,3,4: N or A (0), P (1)

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	1	0	1	0	0	0
Mary	1	0	1	0	1	0
Jim	1	1	0	0	0	0

Calculate Jaccard Coefficient for the following pairs:

(Jack, Mary): J = 0.67, $d_J = 0.33$

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	1	0	1	0	0	0
Mary	1	0	1	0	1	0

- Intersection = |A∩B| = 2
- Union = $|A \cup B| = 3$

Jaccard Coefficient = 0.67

$$J(A,B) = |A \cap B| / |A \cup B| = 2/3 = 0.67$$

Or

$$J = f_{11} / (f_{01} + f_{10} + f_{11}) = 2 / (1 + 0 + 2) = 2/3 = 0.67$$

Jaccard Distance = 0.33

$$d_J = f_{01} + f_{10} / (f_{01} + f_{10} + f_{11}) = (1 + 0) / (1 + 0 + 2) = 1/3 = 0.33$$

or

$$d_J(A, B) = 1 - J(A,B) = 1 - 0.67 = 0.33$$

or

$$d_J(A, B) = (|A \cup B| - |A \cap B|) / |A \cup B| = (3 - 2) / 3 = 1/3 = 0.33$$

(Jack, Jim): J = 0.33, $d_J = 0.67$

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	1	0	1	0	0	0
Jim	1	1	0	0	0	0

- Intersection = |A∩B| = 1
- Union = $|A \cup B| = 3$

Jaccard Coefficient = 0.33

$$J = |A \cap B| / |A \cup B| = f_{11} / (f_{01} + f_{10} + f_{11}) = 1 / 3 = 0.33$$

Jaccard Distance = 0.67

$$d_J = 1 - J(A,B) = f_{01} + f_{10} / (f_{01} + f_{10} + f_{11}) = 2 / 3 = 0.67$$

 $(Jim, Mary) = J = 0.25, d_J = 0.75$

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jim	1	1	0	0	0	0
Mary	1	0	1	0	1	0

- Intersection = |A∩B| = 1
- Union = |AUB| = 4

Jaccard Coefficient = 0.25

$$J = |A \cap B| / |A \cup B| = f_{11} / (f_{01} + f_{10} + f_{11}) = 1 / 4 = 0.25$$

Jaccard Distance = 0.75

$$d_J = 1 - J(A,B) = f_{01} + f_{10} / (f_{01} + f_{10} + f_{11}) = 3 / 4 = 0.75$$