KRR: Unit 2 Formative Activities

by Maria Ingold

2: Sets, Set Theory, Truth Tables and Logic Partee

1. Read Partee et al (1993) Chapter 1 and then attempt exercises 1 and 4, located at the end of the chapter.

Exercise 1

1. Given the following sets:

$$
\begin{array}{ll}
A=\{a, b, c, 2,3,4\} & E=\{a, b,\{c\}\} \\
B=\{a, b\} & F=\emptyset \\
C=\{c, 2\} & G=\{\{a, b\},\{c, 2\}\} \\
D=\{b, c\} &
\end{array}
$$

classify each of the following statements as true or false
(a) $c \in A$
(g) $D \subset A$
(m) $B \subseteq G$
(b) $c \in F$
(h) $A \subseteq C \quad$ (n) $\quad\{B\} \subseteq G$
(c) $c \in E$
(i) $D \subseteq E$
(o) $D \subseteq G$
(d) $\{c\} \in E$
(j) $F \subseteq A$
(p) $\{D\} \subseteq G$
(e) $\{c\} \in C$
(k) $E \subseteq F$
(q) $G \subseteq A$
(f) $B \subseteq A$
(l) $B \in G$
(r) $\{\{c\}\} \subseteq E$
a) T
b) F
c) F
d) T
e) F
f) T
g) T
h) F
i) F
j) T
k) F
l) T. B is a member of G
m) F. B is a subset of $A, \operatorname{not} G$
n) T. The set of B is a subset of G
o) F
p) F
q) F
r) T . The member $\{\mathrm{c}\}$ of set $\{\{\mathrm{c}\}\}$ is subset of $\{\mathrm{a}, \mathrm{b},\{\mathrm{c}\}\}$

Exercise 2

4. Consider the following sets:

$$
\begin{array}{ll}
S 1=\{\{\emptyset\},\{A\}, A\} & S 6=\emptyset \\
S 2=A & S 7=\{\emptyset\} \\
S 3=\{A\} & S 8=\{\{\emptyset\} \\
S 4=\{\{A\}\} & S 9=\{\emptyset,\{\emptyset\}\} \\
S 5=\{\{A\}, A\} &
\end{array}
$$

Answer the following questions. Remember that the members of a set are the items separated by commas, if there is more than one, between the outermost braces only; a subset is formed by enclosing within braces zero or more of the members of a given set, separated by commas.
(a) Of the sets $S 1-S 9$ which are members of $S 1$?
(b) which are subsets of $S 1$?
(c) which are members of $S 9$?
(d) which are subsets of $S 9$?
(e) which are members of $S 4$?
(f) which are subsets of $S 4$?
a) $\mathrm{S} 3, \mathrm{~S} 4, \mathrm{~S} 8, \mathrm{~S} 7$
b) S1, S3, S4, S5, S6, S8
c) $\mathrm{S} 6, \mathrm{~S} 7, \mathrm{~S} 8$
d) $\mathrm{S} 6, \mathrm{~S} 7, \mathrm{~S} 8$
e) S 6
f) S 6

Truth Table Prep

Read the wiki at Sharma et al (2022) and then attempt the exercises below:
i. For each clause (a) - (f) below, create truth tables for each to answer the question of when each statement is false.
a. $\sim P$
b. $P \wedge Q$
c. $P \vee Q$
d. $P \rightarrow Q$
e. $P \longleftrightarrow Q Q$
f. $P \rightarrow(\sim Q)$

		NOT	NOT	AND	OR	NAND	NOR	IMPLY	XOR	XNOR		
\mathbf{P}	\mathbf{Q}	$\sim \mathbf{P}$	$\sim \mathbf{Q}$	$\mathrm{P} \wedge \mathbf{Q}$	$\mathbf{P} \vee \mathbf{Q}$	$\mathbf{P} \uparrow \mathbf{Q}$	$\mathbf{P} \backslash \mathbf{Q}$	$\mathbf{P} \rightarrow \mathbf{Q}$	$\mathbf{P} \vee \mathbf{Q}$	$\mathbf{P} \leftarrow \rightarrow \mathbf{Q}$	$\mathbf{P} \rightarrow(\sim \mathbf{Q})$	$\sim(\mathbf{P}) \rightarrow(\sim \mathbf{Q})$
T	T	F	F	T	T	F	F	T	F	T	F	T
T	F	F	T	F	T	T	F	F	T	F	T	T
F	T	T	F	F	T	T	F	T	T	F	T	F
F	F	T	T	F	F	T	T	T	F	T	T	T

1. Consider the statement ($\sim Q)$-> ($\sim P$).
i. When is it false?

Implies is false when $T \rightarrow F$, so when $\sim Q$ is T and $\sim P$ is F.
ii. Now consider $\mathrm{P} \rightarrow \mathrm{Q}$. When is it false?

When P is T and Q is F.

iii. Do you believe these two compound statements mean the same thing?

They both mean $T \rightarrow F=F$, but find F for opposites
iv. Construct the truth table for the statement $(\sim Q)->(\sim P)$. Then revisit your answer to (c).

Above

v. Construct the truth table for P XOR Q.
vi. Construct truth tables for the following statements.
a. $\sim(P \wedge Q)$
b. $P \vee(Q \wedge R)$
c. $P \vee(Q \vee R)$
d. $(P \vee Q) \vee R$ (Compare to the previous statement.)
e. $(P \rightarrow Q) \wedge(Q \rightarrow P)$

			AND	OR	IMPLY	IMPLY	NOR			
\mathbf{P}	\mathbf{Q}	\mathbf{R}	$\mathrm{P} \wedge \mathbf{Q}$	$\mathbf{P} \vee \mathbf{Q}$	$\mathbf{P} \rightarrow \mathbf{Q}$	$\mathrm{Q} \rightarrow \mathrm{P}$	$\sim(\mathrm{P} \wedge \mathrm{Q})$	$\mathrm{P} \vee(\mathrm{Q} \wedge \mathrm{R})$	$(\mathrm{P} \vee \mathrm{Q}) \vee \mathrm{R}$	$(\mathrm{P} \rightarrow \mathrm{Q}) \wedge(\mathrm{Q} \rightarrow \mathrm{P})$
T	T	T	T	T	T	T	F	T	T	T
T	T	F	T	T	T	T	F	T	T	T
T	F	T	F	T	F	T	T	T	T	F
T	F	F	F	T	F	T	T	T	T	F
F	T	T	F	T	T	F	T	T	T	F
F	T	F	F	T	T	F	T	F	T	F
F	F	T	F	F	T	T	T	F	T	T
F	F	F	F	F	T	T	T	F	F	T

