KRR: Unit 2 Formative Activities

by Maria Ingold

2: Sets, Set Theory, Truth Tables and Logic Partee

1. Read Partee et al (1993) Chapter 1 and then attempt exercises 1 and 4, located at the end of the chapter.

Exercise 1

1. Given the following sets:

$$A = \{a, b, c, 2, 3, 4\}$$
 $E = \{a, b, \{c\}\}$
 $B = \{a, b\}$ $F = \emptyset$
 $C = \{c, 2\}$ $G = \{\{a, b\}, \{c, 2\}\}$
 $D = \{b, c\}$

classify each of the following statements as true or false

- (a) $c \in A$ (g) $D \subset A$ (m) $B \subseteq G$
- (b) $c \in F$ (h) $A \subseteq C$ (n) $\{B\} \subseteq G$
- (c) $c \in E$ (i) $D \subseteq E$ (o) $D \subseteq G$
- (d) $\{c\} \in E$ (j) $F \subseteq A$ (p) $\{D\} \subseteq G$
- (e) $\{c\} \in C$ (k) $E \subseteq F$ (q) $G \subseteq A$ (f) $B \subseteq A$ (l) $B \in G$ (r) $\{\{c\}\} \subseteq E$
- a) T
- b) F
- c) F
- d) T
- e) F f) T
- g) T
- h) F
- i) F
- j) T k) F
- I) T. B is a member of G
- m) F. B is a subset of A, not G
- n) T. The set of B is a subset of G
- o) F
- p) F
- q) F
- r) T. The member {c} of set {{c}} is subset of {a,b,{c}}

Exercise 2

4. Consider the following sets:

```
S1 = \{\{\emptyset\}, \{A\}, A\} S6 = \emptyset

S2 = A S7 = \{\emptyset\}

S3 = \{A\} S8 = \{\{\emptyset\}\}

S4 = \{\{A\}\} S9 = \{\emptyset, \{\emptyset\}\}

S5 = \{\{A\}, A\}
```

Answer the following questions. Remember that the members of a set are the items separated by commas, if there is more than one, between the outermost braces only; a subset is formed by enclosing within braces zero or more of the members of a given set, separated by commas.

- (a) Of the sets S1 S9 which are members of S1?
- (b) which are subsets of S1?
- (c) which are members of S9?
- (d) which are subsets of S9?
- (e) which are members of S4?
- (f) which are subsets of S4?
- a) S3, S4, S8, S7
- b) S1, S3, S4, S5, S6, S8
- c) S6, S7, S8
- d) S6, S7, S8
- e) S6
- f) S6

Truth Table Prep

Read the wiki at Sharma et al (2022) and then attempt the exercises below:

- i. For each clause (a) (f) below, create truth tables for each to answer the question of when each statement is false.
 - a. ~ P
 - b. P \wedge Q
 - c. PVQ
 - $d. \ P \to Q$
 - e. $P \longleftrightarrow Q$
 - f. $P \rightarrow (\sim Q)$

		NOT	NOT	AND	OR	NAND	NOR	IMPLY	XOR	XNOR		
Р	Q	~P	~Q	PΛQ	PVQ	P↑Q	P↓Q	$P \rightarrow Q$	P⊻Q	$P \longleftrightarrow Q$	P → (~ Q)	~(P) → (~ Q)
Т	Т	F	F	Т	Т	F	F	T	F	T	F	Т
Т	F	F	Т	F	Т	T	F	F	Т	F	Т	T
F	Т	T	F	F	Т	T	F	Т	Т	F	Т	F
F	F	T	Т	F	F	T	Т	Т	F	Т	Т	Т

- 1. Consider the statement (\sim Q) -> (\sim P).
 - i. When is it false?

Implies is false when $T \rightarrow F$, so when $\sim Q$ is T and $\sim P$ is F.

ii. Now consider $P \rightarrow Q$. When is it false?

When P is T and Q is F.

iii. Do you believe these two compound statements mean the same thing?

They both mean $T \rightarrow F = F$, but find F for opposites

iv. Construct the truth table for the statement (\sim Q) -> (\sim P). Then revisit your answer to (c).

Above

v. Construct the truth table for P XOR Q.

Above

- Construct truth tables for the following statements. ۷İ.

 - a. $\sim (P \land Q)$ b. $P \lor (Q \land R)$ c. $P \lor (Q \lor R)$

 - d. $(P \lor Q) \lor R$ (Compare to the previous statement.) e. $(P \to Q) \land (Q \to P)$

			AND	OR	IMPLY	IMPLY	NOR			
Р	Q	R	PΛQ	PVQ	$P \rightarrow Q$	Q→P	~ (P ∧ Q)	P ∨ (Q ∧ R)	(P v Q) v R	$(P \to Q) \land (Q \to P)$
Т	Т	Т	T	Т	T	Т	F	T	T	T
Т	Т	F	T	Т	Т	Т	F	Т	T	Т
Т	F	Т	F	Т	F	Т	Т	Т	T	F
Т	F	F	F	Т	F	Т	Т	Т	T	F
F	Т	Т	F	Т	Т	F	Т	Т	T	F
F	Т	F	F	Т	Т	F	Т	F	T	F
F	F	Т	F	F	Т	Т	Т	F	T	Т
F	F	F	F	F	Т	Т	Т	F	F	T