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Artificial Intelligence Solution Implementation 
 

by Maria Ingold 

INTRODUCTION 

Ethical Bank (EthiBank) would like to explore using machine learning (ML) to predict 

customer churn—exiting—while upholding transparency, ethics, and industry 

standards. Following the Cross Industry Standard Process for Data Mining (CRISP-

DM) approach, this feasibility study uses a public bank dataset and WEKA software 

to demonstrate the transferable application, approach, and methods (Niakšu, 2015). 

BUSINESS UNDERSTANDING 

As an online-only fintech startup founded in 2019, EthiBank serves over 100,000 UK 

customers including individuals and businesses. It provides ethical online financial 

services including loans, investments, accounts, and software. However, EthiBank 

faces declining year-over-year revenue growth and competition from AI-driven rivals. 

EthiBank’s churn rate of about 20% negatively impacts revenue and profitability, with 

customer acquisition costs about five times retention (de Lima Lemos et al., 2022). 

Although EthiBank lacks demographic data, it has rich usage, transactional, and 

engagement data, and research demonstrates ML can effectively predict churn using 

only core historical banking data (Rahman & Kumar, 2020; de Lima Lemos et al., 

2022). 

DATA UNDERSTANDING AND PREPARATION  

Reflecting EthiBank’s 20% churn rate, the imbalanced Akturk (2020) supervised 

learning dataset contains 10,000 banking clients with a 20% minority class of 2037 
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churners (Exited = 1) (Khoshgoftaar et al., 2007; Witten et al., 2017). This appears to 

be the same Kaggle dataset analysed by Rahman & Kumar (2020).  

Table 1 shows the removal of five of the 14 original attributes following Duboue 

(2020): features are informative (for human and model), available (not missing), and 

discriminant (divides instances or correlates to target class). Geography was 

discarded because EthiBank is UK-based, Gender because EthiBank does not 

collect, and three had unique values or low variability (Google, N.D.). Of the 

remaining nine attributes, the numeric data was reasonable (Tables 2, 3 and 4), 

however, three attributes and the output class were converted using 

numericToBinary or numericToNominal (with class first requiring conversion to no-

class) (Frank et al., 2016). Reducing features decreases dimensionality which helps 

shorten training time and simplifies the model (Neal, 2019; Rahman & Kumar, 2020).  

Python randomly split the data 90/10 into train/test sets while maintaining the 20% 

churn ratio (Figures 1, 2 and 3). This allows comparison to Rahman & Kumar’s 

(2020) published benchmarks on similar preprocessed data. 

MODELLING 

Supervised Learning 

Supervised learning trains algorithms on labelled training data (output class) to make 

classification (finite) or regression (numeric) predictions on test data (Bell, 2020; 

Russell & Norvig, 2021). To generalise well, models balance simplicity to avoid 

underfitting (high bias) and complexity to avoid overfitting (high variance) (Neal, 

2019). Simpler models are evaluated first (Russell & Norvig, 2021).  
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For bank churn prediction, a binary classification problem, past studies overlap on 

comparing k-nearest neighbours (KNN), decision tree (DT), support vector machine 

(SVM) and random forest (RF), with random forest outperforming (Rahman & Kumar, 

2020; de Lima Lemos et al., 2022).  

All four models solve both classification and regression problems, and are suitable 

for binary classification, however, while KNN and decision trees are interpretable, 

SVM and random forest are opaque (Belle & Papantonis, 2021).  

Comparing these four algorithms (Table 5), a first run with defaults using single 10-

fold cross-validation on the imbalanced training set (Table 6) shows KNN 

underperforming on accuracy, SVM close to baseline, and random forest ahead on 

AUC-ROC, the receiver operating characteristic area under the curve, the key 

measure for imbalanced datasets.  

K-Nearest Neighbors 

KNN is a simple classifier that stores training examples and classifies new inputs by 

identifying the k-most similar examples (measured by distance) and assigning the 

majority label (Aha et al., 1991; Laaksonen & Oja, 1996; Witten et al., 2017). Fast, 

flexible training is a key advantage over generalised models like decision tree, but 

testing is slower due to distance calculations (Aha et al., 1991; Witten et al., 2017). 

Hyperparameter k controls model complexity—too low overfits and too high 

underfits—and is usually odd to avoid tied votes (Russell & Norvig, 2021). With 

default k=1 underperforming, 10 repetitions of 10-fold cross-validation on the 

imbalanced training set (Figures 12 and 13) found k=17 optimised 84% accuracy 

(compared to 78.7%), and k=15+ returned AUC-ROC 0.81 (compared to 0.66). The 

higher k=17 generalised better than k=5 found by Rahman & Kumar (2020), likely 
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due to preprocessing variations (one less feature) and cross-validation method (10% 

hold out). 

KNN should suit eight features and 9000 training samples, because it is 

nonparametric (no assumptions about data distribution), and performs well with 

abundant data in low dimensions (distance becomes less meaningful with the curse 

of dimensionality) (Laaksonen & Oja, 1996; Russell & Norvig, 2021). 

Decision Tree 

Decision trees recursively split data on highest information gain—indicating the most 

important attribute—until classification at a leaf node (Witten et al., 2017; Bell, 2020; 

Charbuty & Abdulazeez, 2021; Russell & Norvig, 2021). Attribute importance 

transparency is a key reason for using decision tree. Age was the most important, 

with NumOfProducts second-most informative (Figure 15). 

While decision trees handle large data sets well, unpruned trees overfit, therefore, 

WEKA’s J48 (C4.5) algorithm prunes automatically (Witten et al., 2017; Bell, 2020). 

The pruned 79-node tree with 42 leaves achieved 85% accuracy on the imbalanced 

training set (Figure 14), indicating that older customers and those with more products 

tend to stay, although Figures 8 and 9 show this is taken from relatively small sample 

sizes. Pruning hyperparameter tests show increased pruning (0.25 to 0.1) improved 

AUC-ROC slightly (0.793 to 0.806), while reducing to a 53-node tree with 29 leaves 

that maintained Age and then NumOfProducts’ importance (Figures 16-19). 

Support Vector Machine 

SVM classifies data by finding the maximum margin hyperplane that separates 

classes (Russell & Norvig, 2021). The hyperplane is equidistant between margins 

defined by the support vectors—training points nearest the boundary—with a wider 
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margin providing more confidence in generalisation (Bell, 2020). By using support 

vectors rather than storing all training points (like KNN) SVM resists overfitting 

(Russell & Norvig, 2021). 

Non-linear classification uses the “kernel trick” to map to higher dimensions (Bell, 

2020). WEKA’s SVM, Platt’s (1999) Sequential Minimal Optimization (SMO), defaults 

to PolyKernel.  

The linear PolyKernel was faster than non-linear RBFKernel, with 9 million versus 

457 million evaluations, but at equal 81.9% accuracy (Figures 22 and 23). However, 

SVM underperformed, potentially struggling with imbalanced data (Figure 24) 

(Rahman & Kumar, 2020). 

Random Forest 

Random forest is an ensemble of decision trees that extend decision tree bagging 

(bootstrap aggregating) (Russell & Norvig, 2021). Bagging aggregates predictions 

from k trees of N random examples, but because information gain often selects the 

same root, random forest decreases correlation by randomly sampling attributes at 

each split. They then predict by taking the majority vote (for classification) and 

averaging (for regression).  

While single decision trees require pruning to avoid overfitting, random forest does 

not, and resists overfitting as more randomised trees are added, although 

performance plateaus beyond a point (Breiman, 2001).  

The default hyperparameters of k=100 trees and N=100% bag size (full 9000 training 

set) achieved 0.83 AUC-ROC using 10x10-fold cross-validation across the 

imbalanced training set (Figures 25, 26 and 27). Changing k and N did not improve 
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performance, so defaults were retained. While slower and less interpretable, random 

forest has so far performed best.  

EVALUATION 

Training, Validation and Test 

The dataset is assumed to be stationary, and independent and identically distributed 

(i.i.d.), and the 10,000 was randomly split 90/10 into train and test sets from the 

same distribution while maintaining the 20% churn ratio (Russell & Norvig, 2021; de 

Lima Lemos et al., 2022). With 10% held out for testing, k-fold cross-validation 

(k=10) was used on the training set for model selection and hyperparameter tuning 

(Rahman & Kumar, 2020). This allowed each data point to be validated on a different 

fold, while retaining the full 9000 examples for training. WEKA’s stratified cross-

validation ensured the churn ratio was consistent across folds (Witten et al., 2017). 

To reduce variability, 10 runs of 10-fold cross-validation were averaged when tuning 

KNN, decision tree and random forest in WEKA Experimenter (Witten et al., 2017; de 

Lima Lemos et al., 2022). However, single 10-fold cross-validation was used for the 

final model evaluation in WEKA Explorer as Experimenter does not support separate 

test sets (Bouckaert et al., 2022).  

Evaluation Metrics 

Detailed in A.3.1, key evaluation metrics included build speed, accuracy, true positive 

rate (recall), false positive rate, precision, F-measure, and AUC-ROC (University of 

Essex Online, N.D.; Witten et al., 2017; Bouckaert et al., 2022). For imbalanced 

classification, accuracy (higher is better) is less useful than AUC-ROC, with 0.5 

random, 0.8 good, and 1.0 perfect.  
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Additionally, recall (true positive rate) is the percentage of correctly found positive 

cases, with higher better. False positive rate is the percentage incorrectly predicted 

as positive, with lower better. Precision is the percentage of correct positive 

predictions, with higher better. F-measure balances precision and recall, with higher 

better, and a maximum of one. Confusion matrices visualise model success through 

high values in the diagonal. 

Imbalanced Training Evaluation 

On imbalanced data, the baseline of 79.6% just predicts the majority class (Table 9).  

After previously tuning KNN’s hyperparameter k from 1 to 17, its AUC-ROC 

exceeded the 0.8 boundary (from 0.659 to 0.808), overtaking decision tree’s tuned 

pruning hyperparameter (which had increased AUC-ROC from 0.793 to 0.806). SVM 

struggled at 0.565, excelling only at having the lowest minority class false positive 

rate (Figure 20). Random forest, however, achieved the best AUC-ROC of 0.827 

(Figure 25 and Table 9).  

Tuned models generalised better, including improving KNN’s minority class recall. 

However, SVM failed to fit the imbalanced boundary. Ultimately, random forest was 

most robust. 

Oversampled Training Evaluation 

The “class imbalance problem” shows recall and precision, and thus F-measure, 

generally performed better for majority than minority in imbalanced data (Table 9) 

(Mohammed et al., 2020). Synthetic minority oversampling technique (SMOTE) 

improved majority bias by oversampling training (not test) data to balance the 

classes (Chawla et al., 2002). The data was then randomised (Figure 29).  
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After oversampling, accuracy dropped for KNN and SVM, but the minority and 

majority metrics were more closely balanced, with minority typically performing much 

better, although the majority class values sometimes decreased (Table 10).  

Possibly due to dense synthetic samples, KNN performed slightly better at k=9 

versus k=17 on oversampled data. Tuning decision tree pruning made minimal 

difference, although 0.05 built a simpler tree than 0.1 (Tables 11 and 12). Crucially, 

however, oversampling made numOfProducts a more important feature than Age 

(Figure 37). 

Random forest outperformed with 0.948 AUC-ROC and 88.24% accuracy. Decision 

tree was second best, followed by KNN and SVM (Table 13). With AUC-ROC 

significantly increased for all four models, balancing the training data improved 

generalisation and minority class performance.  

Test Set Results 

Comparing test (Table 14) with training (Table 15) results, random forest maintained 

robust performance on test with AUC-ROC of 0.828 (imbalanced) and 0.843 

(oversampled) versus training at 0.827 (imbalanced) and 0.948 (oversampled). This 

indicates good generalisation and avoidance of overfitting.  

After oversampling, decision tree had the highest test accuracy at 85%, however, the 

oversampled minority class recall improved at the cost of lower precision. The 

oversampled training data increased the tree size, possibly resulting in overfitting, 

although it was pruned more aggressively, which could have reduced test precision. 

Oversampling reduced KNN’s test AUC-ROC and accuracy, but increased majority 

class precision and minority class recall and F-measure. Oversampling made it 

easier to detect minority examples, but also led to more false positives. 
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SVM consistently failed to generalise well in both training and test with the lowest 

AUC-ROC for both imbalanced and oversampled data, and for imbalanced data it 

favoured precision over recall for the minority class. 

In summary, random forest generalised best with test performance matching strong 

training results. With high accuracy, decision tree provided the second-best results. 

DEPLOYMENT 

Following CRISP-DM, this analysis demonstrated the feasibility of using machine 

learning for ethical predictive churn modelling (Niakšu, 2015). Like EthiBank data, 

the public dataset lacked some demographics, but demonstrated ethically evaluating 

churn with only core banking data (Akturk, 2020). EthiBank’s 100,000+ customers 

with 20% churn could also evaluate undersampling (randomly balancing churners 

and non-churners) in addition to oversampling (Rahman & Kumar, 2020; de Lima 

Lemos et al., 2022).  

Both this analysis and published research confirm random forest’s top performance 

for bank churn modelling (Rahman & Kumar, 2020; de Lima Lemos et al., 2022). 

With cloud infrastructure, 100,000+ trees can train quickly using parallel processing 

(Russell & Norvig, 2021). 

An Application Programming Interface (API) can integrate predictions with  

EthiBank’s customer management system to automate identifying high churn risk 

customers for targeted retention campaigns (Bloch, 2006). Local Interpretable 

Model-Agnostic Explanations (LIME) techniques can increase trust and 

transparency, and corroborating random forest with highly transparent decision tree 

results may help assure stakeholders (Belle & Papantonis, 2021).  
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Before full deployment, further real-world testing on EthiBank data with a pilot group 

is advised. Ongoing monitoring tracks performance metrics to maintain effectiveness 

(IBM, N.D.). Periodic retraining on new customer data maintains accuracy, although 

if the focus is on high-value customers first, tweaks may be needed once a churn 

threshold is achieved.  

In summary, this study demonstrated using industry standards and transparent, 

ethical machine learning to minimise churn and increase EthiBank’s revenue. Next 

steps include further planning, costing and validation—but the concept shows strong 

potential.   
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APPENDIX 

A.1 Dataset 

https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers  

TABLE  1 | Raw dataset attributes and preprocessed type and action. (14 original 
attributes, with 8 retained features and 1 output class) 

Attribute Description Type Preprocessing 

RowNumber 1 to 10000 Numeric Removed 

CustomerId Unique random ID Numeric Removed 

Surname Last name String Removed 

CreditScore Credit score Numeric  

Geography Germany or France Nominal Removed 

Gender Male or Female Nominal Removed 

Age Customer age Numeric  

Tenure Years with bank Numeric  

Balance Customer bank balance Numeric  

NumOfProducts Number bank products Nominal numericToNominal 

HasCrCard Credit card (1 = yes) Nominal (Binary) numericToBinary 

IsActiveMember Active (1 = yes) Nominal (Binary) numericToBinary 

EstimatedSalary Salary estimate (USD) Numeric  

Exited Class (1 = churned) Nominal (Binary) numericToBinary 

 

  

https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers
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TABLE  2 | WEKA's min, max, mean, and standard deviation of 10,000 full dataset 

Feature Name Min Max Mean 
Standard 
Deviation 

CreditScore 350 850 650.529 96.653 

Age 18 92 38.922 10.488 

Tenure 0 10 5.013 2.892 

Balance 0 250,898.09 76,485.889 62,397.405 

NumOfProducts 1 4 1.53 0.582 

HasCrCard 0 1 0.706 0.456 

IsActiveMember 0 1 0.515 0.5 

EstimatedSalary 11.58 199,992.48 100,090.24 57,510.493 

Exited 0 1 0.204 0.403 

 

TABLE  3 | WEKA's min, max, mean, and standard deviation of 9000 training set  

Feature Name Min Max Mean 
Standard 
Deviation 

CreditScore 350 850 651.326 96.35 

Age 18 92 38.875 10.449 

Tenure 0 10 5.014 2.893 

Balance 0 250,898.09 76,591.219 62,404.091 

NumOfProducts 1 4 1.53 0.58 

HasCrCard 0 1 0.705 0.456 

IsActiveMember 0 1 0.514 0.5 

EstimatedSalary 11.58 199,992.48 99,988.897 57,495.602 

Exited 0 1 0.204 0.403 

 

TABLE  4 | WEKA's min, max, mean, and standard deviation of 1000 test set 

Feature Name Min Max Mean 
Standard 
Deviation 

CreditScore 358 850 643.355 99.105 

Age 18 79 39.343 10.83 

Tenure 0 10 5.003 2.887 

Balance 0 238,387.56 75,537.918 62,360.382 

NumOfProducts 1 4 1.534 0.594 

HasCrCard 0 1 0.707 0.455 

IsActiveMember 0 1 0.528 0.499 

EstimatedSalary 91.75 199,454.37 101,002.324 57,665.143 

Exited 0 1 0.203 0.402 
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FIGURE 1 | Train / Test Split (Python and pandas) 

 

FIGURE 2 | Churn and test imbalance ratios 

 

FIGURE 3 | 9000 training instances with 80/20 majority/minority class ratio 
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FIGURE 4 | 1000 test instances with 80/20 majority/minority class ratio 

 

FIGURE 5 | Raw dataset before conversion (class is numeric) 
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FIGURE 6 | Class after binarization using NumericToBinary (must change class to 
“No class” first then change back, other fields can be converted directly) 

 

FIGURE 7 | NumOfProducts as a numeric 
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FIGURE 8 | NumOfProducts after Nominalisation 

 

FIGURE 9 | Age 
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A.2 Modelling Outputs 

A.2.1 Algorithms 

TABLE  5 | Model and WEKA algorithm 

Model WEKA Description 

k-nearest neighbour (KNN) IBk Instance-Based learner 

decision tree (DT) J48 C4.5 

support vector machine (SVM) SMO Sequential Minimal Optimisation  

random forest (RF) RandomForest  Random forest 
 

A.2.2 Initial Sense Check with Default Parameters 

TABLE  6 | Initial sense check using single 10-fold cross-validation with imbalanced 
training set (9000) and default model parameters (majority class 0=retained; minority 
class 1=churned) 

Model Build 
(Sec) 

Accuracy Kappa Class TP 
Rate 

FP 
Rate 

Precision Recall F-
Measure 

ROC 
Area 

Baseline 0.01 79.62% 0 0 1.000 1.000 0.796 1.000 0.887 0.499 

    1 0.000 0.000 ? 0.000 ? 0.499 

KNN 0.01 78.31% 0.3226 0 0.868 0.550 0.860 0.868 0.864 0.659 

    1 0.450 0.132 0.467 0.450 0.458 0.659 

DT 0.17 85.07% 0.4417 0 0.967 0.603 0.862 0.967 0.912 0.793 

    1 0.397 0.033 0.753 0.397 0.520 0.793 

SVM 1.42 81.91% 0.1888 0 0.994 0.864 0.818 0.994 0.897 0.565 

    1 0.136 0.006 0.853 0.136 0.234 0.565 

RF 2.31 85.04% 0.4595 0 0.957 0.565 0.869 0.957 0.911 0.827 

    1 0.435 0.043 0.720 0.435 0.542 0.827 
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A.2.3 Baseline (ZeroR) 

 

FIGURE 10 | Baseline (ZeroR) (default model parameters, single 10-fold cross-
validation, imbalanced training set) 

 

A.2.4 K-Nearest Neighbors (IBk) 

 

FIGURE 11 | KNN (default model parameters, single 10-fold cross-validation, 
imbalanced training set) 
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FIGURE 12 | KNN—Accuracy—comparing k = 1, 5, 9, 15, 17, 19, 29, with 17 best for 
accuracy. v indicates that against k = 1 at 5% statistical significance, the others are 
statistically better. (10x10-fold cross-validation, imbalanced training set) 

 

 

FIGURE 13 | KNN—AUC ROC—comparing k = 1, 5, 9, 15, 17, 19, 29, with 15 and 
above best for AUC ROC. v indicates that against k = 1 at 5% statistical significance, 
the others are statistically better. (10x10-fold cross-validation, imbalanced training 
set) 
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A.2.5 Decision Tree (J48) 

 

FIGURE 14 | Decision tree (J48) (default hyperparameters, single 10-fold cross-
validation, imbalanced training set) 
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FIGURE 15 | Decision tree showing Age and then NumOfProducts as most important 
attributes. (default hyperparameters, single 10-fold cross-validation, imbalanced 
training set) 

 

FIGURE 16 | Decision tree—Accuracy—comparing confidenceFactor default 0.25 
(smaller value prune mores)  (10x10-fold cross-validation, imbalanced training set) 
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FIGURE 17 | Decision tree—AUC-ROC—comparing confidenceFactor default 0.25 
(smaller value prunes more)  (10x10-fold cross-validation, imbalanced training set) 

 

FIGURE 18 | Decision tree—AUC-ROC—confidenceFactor (smaller value prunes 
more—0.1)  (10-fold cross-validation, imbalanced training set) 
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FIGURE 19 | Decision tree after further pruning with hyperparameter tuning 
(confidenceFactor 0.1) reduced nodes to 53 and leaves to 29 (10-fold cross-
validation, imbalanced training set) 

A.2.6 Support Vector Machine (SMO) 

 

FIGURE 20 | SMV (SMO) (default model parameters, single 10-fold cross-validation, 
imbalanced training set) 
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FIGURE 21 | SVM using Linear Kernel. Attribute weights. (single 10-fold cross-
validation, imbalanced training set) 

 

 

FIGURE 22 | SVM using Linear Kernel. Fast to build and lower number of kernel 
evaluations for the same accuracy. (single 10-fold cross-validation, imbalanced 
training set)  
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FIGURE 23 | SVM using RBF Kernel. Significant time to build and very high number 
of kernel evaluations for the same accuracy. (single 10-fold cross-validation, 
imbalanced training set) 
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FIGURE 24 | SVM Boundary Visualiser between two highest information gain 
attributes, Age and NumOfProducts (numeric), does not display a boundary 
(imbalanced trainng set) 
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A.2.7 Random Forest (RandomForest) 

 

FIGURE 25 | Random forest (RandomForest) (default model parameters, single 10-
fold cross-validation, imbalanced training set) 

 

FIGURE 26 | Random forest—Accuracy—N and k hyperparameter comparison with 
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, imbalanced training set) 
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FIGURE 27 | Random forest—AUC ROC—N and k hyperparameter comparison with 
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, imbalanced training set) 

A.3 Evaluation Outputs 

A.3.1 Evaluation Matrix and Metrics 

For classification (categorical) outputs, the following metrics and explanations come 

from the University of Essex Online (N.D.), and WEKA’s Witten et al. (2017) and 

Bouckaert et al. (2022). 

A.3.1.1 Kappa Statistic 

• Kappa statistic compares model accuracy to random baseline. 

• Higher is better as values near 0 means model is no better than random. 

A.3.1.2 Confusion Matrix 

TABLE  7 Confusion Matrix 

 TRUE CLASS 

PREDICTED  
CLASS 

 Positive Negative 

Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 
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• Higher numbers on the diagonal (TP and TN), with lower FP and FN, visually 

indicates higher success of the algorithm. 

A.3.1.3 Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
 

• For WEKA Explorer: Correctly Classified Instances 

• Higher accuracy is better 

• Not useful for imbalanced datasets 

A.3.1.4 Precision  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

• Percentage of positive predictions that were correct 

• Higher precision is better 

• Correctly tagged divided by tagged 

A.3.1.5 Recall (True Positive (TP) rate) 

𝑇𝑃 𝑅𝑎𝑡𝑒 =  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

• Percentage of correctly found positive cases 

• Higher is better 

• Correctly tagged divided by should be tagged 

• In WEKA this is the same as TP rate 

A.3.1.6 False Positive (FP) Rate  

𝐹𝑃 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

• FP rate in WEKA is FP divided by total negatives (FP+TN) 
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• Percentage incorrectly predicted as positive 

• Lower is better 

A.3.1.7 F-Measure 

𝐹𝛽 = (1 +  𝛽2)  × 
𝑃 × 𝑅

𝛽2 𝑃 + 𝑅
  

• Higher F-measure means better balance of precision and recall. 

• Higher is better, maximum is 1. 

• Model with higher precision, recall and F1 is better (especially for minority 

positive class in an imbalanced dataset.) 

• 𝐹𝛽=1 measure equally favours both precision and recall 

• 𝛽 specifies if weight is applied more to precision or recall. 

A.3.1.8 AUC-ROC 

• Receiver Operating Characteristic Area Under the Curve 

• AUC-ROC ranges from 0.0 to 1.0, higher is better 

• Model performance should be above AUC-ROC 

• AUC of 0.0 is 100% wrong; 1.0 is 100% correct; 0.5 is no better than chance 

• A good model AUC above 0.8 

• One of the best metrics for an imbalanced dataset as evaluates both positive 

and negative classes 

• Measures between the True Positive (TP) Rate on the y-axis and the False 

Positive (FP) Rate on the x-axis 
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A.4.1 Imbalanced Training Evaluation 

TABLE  8 | Hyperparameter selection (imbalanced training set) 

Model Hyperparameter WEKA Name Default Tuned Description 

KNN k (k-nearest) KNN 1 17 17 was best AUC-ROC and accuracy 

DT Pruning level confidenceFactor 0.25 0.1 
0.1 had slightly better AUC-ROC and created 
simpler tree (smaller with fewer leaves) 

SVM Kernel kernel PolyKernel PolyKernel 
Compared to RBFKernel which was slower 
with same results. 

RF k (trees in RF) numIterations 100 100 Default was best. Tried 50, 100, and 200. 

 
N (bag % of 
training set) 

bagSizePercent 100 100 Default was best. Tried 100 and 75. 

 

TABLE  9 | Imbalanced training evaluation using single 10-fold cross-validation with 
imbalanced training set (9000) and tuned hyperparameters (KNN k = 17, DT 
confidenceFactor = 0.1) (majority class 0=retained; minority class 1=churned) 

Model Build  
(Sec) 

Accuracy Class TP Rate 
(Recall) 

FP Rate Precision F-Measure ROC Area 

Baseline 0.01 79.62% 0 1.000 1.000 0.796 0.887 0.499 

   1 0.000 0.000 ? ? 0.499 

KNN (17) 0 83.88% 0 0.976 0.697 0.845 0.906 0.808 

   1 0.303 0.024 0.763 0.434 0.808 

DT (0.1) 0.17 85.41% 0 0.972 0.605 0.863 0.914 0.806 

   1 0.395 0.028 0.780 0.525 0.806 

SVM 1.42 81.91% 0 0.994 0.864 0.818 0.897 0.565 

   1 0.136 0.006 0.853 0.234 0.565 

RF 2.31 85.04% 0 0.957 0.565 0.869 0.911 0.827 

   1 0.435 0.043 0.720 0.542 0.827 
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A.4.1.1 K-Nearest Neighbor 

 

FIGURE 28 | KNN (k=17, single 10-fold cross-validation, imbalanced training set) 
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A.5.1 Oversampled (Balanced) Training Evaluation 

 

FIGURE 29 | After SMOTE, creates a balanced dataset. Randomised applied next. 

 

TABLE  10 | Oversampled balanced training evaluation using single 10-fold cross-
validation with balanced training set (14,331) and same hyperparameters as 
imbalanced (majority class 0=retained; minority class 1=churned) 

Model Build  
(Sec) 

Accuracy Class TP Rate 
(Recall) 

FP Rate Precision F-Measure ROC Area 

Baseline 0 50.00% 0 1.000 1.000 0.500 0.667 0.500 

   1 0.000 0.000 ? ? 0.500 

KNN (17) 0 81.15% 0 0.769 0.146 0.840 0.803 0.894 

   1 0.854 0.231 0.787 0.819 0.894 

DT (0.1) 0.19 88.03% 0 0.930 0.169 0.846 0.886 0.925 

   1 0.831 0.070 0.922 0.874 0.925 

SVM 14.92 78.34% 0 0.790 0.224 0.780 0.785 0.783 

   1 0.776 0.210 0.787 0.782 0.783 

RF 3.4 88.24% 0 0.905 0.140 0.866 0.885 0.948 

   1 0.860 0.095 0.900 0.880 0.948 

 

 

 



38 
 

TABLE  11 | New hyperparameter selections (oversampled balanced training set) 

Model Hyperparameter WEKA Name Default Tuned Description 

KNN k (k-nearest) KNN 1 9 

9 was best accuracy and just slightly lower 
AUC-ROC to 17 *(0.891 instead of 0.894) 
Precision, recall and F-measure were all 
better. 

DT Pruning level confidenceFactor 0.25 0.05 
0.05 had slightly better AUC-ROC but 
matched 0.1 on accuracy. It did create a 
simpler tree (smaller with fewer leaves) 

SVM Kernel kernel PolyKernel PolyKernel RBFKernel was significantly slower. 

RF k (trees in RF) numIterations 100 100 
Default was best for AUC-ROC and only .05 
better for 200. For simplicity and speed 
keeping 100. Tried 50, 100, and 200. 

 
N (bag % of 
training set) 

bagSizePercent 100 100 Default was best. Tried 100 and 75. 

 

TABLE  12 | Oversampled balanced training evaluation using single 10-fold cross-
validation with balanced training set (14,331) and new hyperparameters for balanced 
training set (majority class 0=retained; minority class 1=churned) 

Model Build  
(Sec) 

Accuracy Class TP Rate 
(Recall) 

FP Rate Precision F-Measure ROC Area 

Baseline 0 50.00% 0 1.000 1.000 0.500 0.667 0.500 

   1 0.000 0.000 ? ? 0.500 

KNN (9) 0 81.53% 0 0.777 0.146 0.842 0.808 0.891 

   1 0.854 0.231 0.787 0.819 0.891 

DT (0.05) 0.19 88.03% 0 0.926 0.166 0.848 0.886 0.926 

   1 0.834 0.074 0.919 0.875 0.926 

SVM 14.92 78.34% 0 0.790 0.224 0.780 0.785 0.783 

   1 0.776 0.210 0.787 0.782 0.783 

RF 3.4 88.24% 0 0.905 0.140 0.866 0.885 0.948 

   1 0.860 0.095 0.900 0.880 0.948 

 

TABLE  13 | Comparison between imbalanced and oversampled balanced training 
sets with hypertuned parameters (KNN k = 17 or 9, DT confidenceFactor = 0.1 or 
0.05) 

Model 

IMBALANCED 
Accuracy 
(KNN = 17,  
DT = 0.1) 

OVERSAMPLED 
Accuracy 
(KNN = 17,  
DT = 0.1) 

OVERSAMPLED 
Accuracy 
(KNN = 9,  
DT = 0.05) 

IMBALANCED 
ROC Area 
(KNN = 17,  
DT = 0.1) 

OVERSAMPLED 
ROC Area 
(KNN = 17,  
DT = 0.1) 

OVERSAMPLED 
ROC Area 
(KNN = 9,  
DT = 0.05 

Baseline 79.62% 50.00% 50.00% 0.499 0.500 50.00% 

KNN 83.88% 81.15% 81.53% 0.808 0.894 0.891 

DT 85.41% 88.03% 88.03% 0.806 0.925 0.926 

SVM 81.91% 78.34% 78.34% 0.565 0.783 0.783 

RF 85.04% 88.24% 88.24% 0.827 0.948 0.948 
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A.5.1.1 K-Nearest Neighbor 

 

FIGURE 30 | KNN with hyperparameter k=17 (10-fold cross-validation, balanced 
training set) 

 

 

FIGURE 31 | KNN—Accuracy—hyperparameter comparison. 9 had highest accuracy 
(10x10-fold cross-validation, balanced training set) 
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FIGURE 32 | KNN—AUC-ROC—hyperparameter comparison. 9+ had highest AUC-
ROC (10x10-fold cross-validation, balanced training set) 

 

 

FIGURE 33 | KNN with hyperparameter k=9 (10-fold cross-validation, balanced 
training set) 
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A.5.1.2 Decision Tree 

 

FIGURE 34 | Decision tree —Accuracy—hyperparameter comparison. 0.1 and 0.05 
had highest accuracy (10x10-fold cross-validation, balanced training set) 

 

FIGURE 35 | Decision tree —AUC-ROC—hyperparameter comparison. 0.05 had 
highest AUC-ROC (10x10-fold cross-validation, balanced training set) 
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FIGURE 36 | Decision tree with 149 nodes and 76 leaves (confidenceFactor=0.05, 
single 10-fold cross-validation, oversampled balanced training set) 

 

 

FIGURE 37 | Decision tree showing NumOfProducts and then Age as most important 
attributes. (confidenceFactor=0.05, single 10-fold cross-validation, oversampled 
balanced training set) 
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A.5.1.4 Random Forest 

 

FIGURE 38 | Random forest—Accuracy—N and k hyperparameter comparison with 
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, oversampled balanced training set) 

 

 

FIGURE 39 | Random forest—AUC-ROC—N and k hyperparameter comparison with 
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, oversampled balanced training set) 
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A.6.1 Test Set Results 

A.6.1.1 TEST SET RESULTS 

TABLE  14 | TEST SET RESULTS COMPARISON SUMMARY 

Model Balance Accuracy Class TP Rate 
(Recall) 

FP Rate Precision F-Measure ROC Area 

KNN (17) Imbalanced 84.1% 0 0.971 0.670 0.851 0.907 0.809 

   1 0.330 0.029 0.744 0.457 0.809 

DT (0.1) Imbalanced 85.8% 0 0.980 0.621 0.861 0.917 0.802 

   1 0.379 0.020 0.828 0.520 0.802 

SVM Imbalanced 82.5% 0 0.996 0.847 0.822 0.901 0.574 

   1 0.153 0.004 0.912 0.262 0.574 

RF Imbalanced 84.9% 0 0.950 0.547 0.872 0.909 0.828 

   1 0.453 0.050 0.697 0.549 0.828 

KNN (9) 
Oversampled 

74.2% 0 0.758 0.320 0.903 0.824 0.791 

 
 

 1 0.680 0.242 0.417 0.517 0.791 

DT (0.05) 
Oversampled 

85% 0 0.934 0.478 0.885 0.908 0.803 

 
 

 1 0.522 0.066 0.667 0.586 0.803 

SVM 
Oversampled 

74.7% 0 0.789 0.419 0.881 0.833 0.685 

 
 

 1 0.581 0.211 0.581 0.483 0.685 

RF 
Oversampled 

83.7% 0 0.907 0.438 0.890 0.899 0.843 

 
 

 1 0.562 0.093 0.606 0.583 0.843 
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A.6.1.2 Imbalanced 

A.6.1.2.1 K-Nearest Neighbour: TEST RESULT (Imbalanced) 

 

FIGURE 40 | k-Nearest Neighbor: TEST RESULT (Imbalanced, k=17) 
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A.6.1.2.1 Decision Tree: TEST RESULT (Imbalanced) 

 

FIGURE 41 | Decision tree: TEST RESULT (Imbalanced, confidenceFactor = 0.1) 
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A.6.1.2.1 Support Vector Machine: TEST RESULT (Imbalanced) 

 

FIGURE 42 | Support Vector Machine: TEST RESULT (Imbalanced) 
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A.6.1.2.1 Random Forest: TEST RESULT (Imbalanced) 

 

FIGURE 43 | Random forest: TEST RESULT (Imbalanced) 
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A.6.1.3 Oversampled (Balanced) 

A.6.1.3.1 K-Nearest Neighbor: TEST RESULT (Oversampled) 

 

FIGURE 44 | k-Nearest Neighbor: TEST RESULT (Oversampled, k=9) 
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A.6.1.3.2 Decision Tree: TEST RESULT (Oversampled) 

 

FIGURE 45 | Decision tree: TEST RESULT (Oversampled, confidenceFactor = 0.05) 
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A.6.1.3.3 Support Vector Machine: TEST RESULT (Oversampled) 

 

FIGURE 46 | Support Vector Machine: TEST RESULT (Oversampled) 
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A.6.1.3.4 Random Forest: TEST RESULT (Oversampled) 

 

FIGURE 47 | Random forest: TEST RESULT (Oversampled) 
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A.7.1 Comparison  

A.7.1.1 TRAINING COMPARISON SUMMARY 

TABLE  15 | TRAINING COMPARISON SUMMARY 

Model Balance Accuracy Class TP Rate 
(Recall) 

FP Rate Precision F-Measure ROC Area 

KNN (17) Imbalanced 83.88% 0 0.976 0.697 0.845 0.906 0.808 

   1 0.303 0.024 0.763 0.434 0.808 

DT (0.1) Imbalanced 85.41% 0 0.972 0.605 0.863 0.914 0.806 

   1 0.395 0.028 0.780 0.525 0.806 

SVM Imbalanced 81.91% 0 0.994 0.864 0.818 0.897 0.565 

   1 0.136 0.006 0.853 0.234 0.565 

RF Imbalanced 85.04% 0 0.957 0.565 0.869 0.911 0.827 

   1 0.435 0.043 0.720 0.542 0.827 

KNN (9) 
Oversampled 

81.53% 0 0.777 0.146 0.842 0.808 0.891 

 
 

 1 0.854 0.231 0.787 0.819 0.891 

DT (0.05) 
Oversampled 

88.03% 0 0.926 0.166 0.848 0.886 0.926 

 
 

 1 0.834 0.074 0.919 0.875 0.926 

SVM 
Oversampled 

78.34% 0 0.790 0.224 0.780 0.785 0.783 

 
 

 1 0.776 0.210 0.787 0.782 0.783 

RF 
Oversampled 

88.24% 0 0.905 0.140 0.866 0.885 0.948 

 
 

 1 0.860 0.095 0.900 0.880 0.948 

 

A.7.1.2 Other Research 

 

FIGURE 48 | de Lima Lemos et.al with balanced dataset using AUC-ROC for training 

(de Lima Lemos et al., 2022) 



54 
 

 

FIGURE 49 | Rahman & Kumar with imbalanced dataset—accuracy before and after 
oversampling 

(Rahman and Kumar, 2020) 


