
1

Artificial Intelligence Solution Implementation

by Maria Ingold

INTRODUCTION

Ethical Bank (EthiBank) would like to explore using machine learning (ML) to predict

customer churn—exiting—while upholding transparency, ethics, and industry

standards. Following the Cross Industry Standard Process for Data Mining (CRISP-

DM) approach, this feasibility study uses a public bank dataset and WEKA software

to demonstrate the transferable application, approach, and methods (Niakšu, 2015).

BUSINESS UNDERSTANDING

As an online-only fintech startup founded in 2019, EthiBank serves over 100,000 UK

customers including individuals and businesses. It provides ethical online financial

services including loans, investments, accounts, and software. However, EthiBank

faces declining year-over-year revenue growth and competition from AI-driven rivals.

EthiBank’s churn rate of about 20% negatively impacts revenue and profitability, with

customer acquisition costs about five times retention (de Lima Lemos et al., 2022).

Although EthiBank lacks demographic data, it has rich usage, transactional, and

engagement data, and research demonstrates ML can effectively predict churn using

only core historical banking data (Rahman & Kumar, 2020; de Lima Lemos et al.,

2022).

DATA UNDERSTANDING AND PREPARATION

Reflecting EthiBank’s 20% churn rate, the imbalanced Akturk (2020) supervised

learning dataset contains 10,000 banking clients with a 20% minority class of 2037

2

churners (Exited = 1) (Khoshgoftaar et al., 2007; Witten et al., 2017). This appears to

be the same Kaggle dataset analysed by Rahman & Kumar (2020).

Table 1 shows the removal of five of the 14 original attributes following Duboue

(2020): features are informative (for human and model), available (not missing), and

discriminant (divides instances or correlates to target class). Geography was

discarded because EthiBank is UK-based, Gender because EthiBank does not

collect, and three had unique values or low variability (Google, N.D.). Of the

remaining nine attributes, the numeric data was reasonable (Tables 2, 3 and 4),

however, three attributes and the output class were converted using

numericToBinary or numericToNominal (with class first requiring conversion to no-

class) (Frank et al., 2016). Reducing features decreases dimensionality which helps

shorten training time and simplifies the model (Neal, 2019; Rahman & Kumar, 2020).

Python randomly split the data 90/10 into train/test sets while maintaining the 20%

churn ratio (Figures 1, 2 and 3). This allows comparison to Rahman & Kumar’s

(2020) published benchmarks on similar preprocessed data.

MODELLING

Supervised Learning

Supervised learning trains algorithms on labelled training data (output class) to make

classification (finite) or regression (numeric) predictions on test data (Bell, 2020;

Russell & Norvig, 2021). To generalise well, models balance simplicity to avoid

underfitting (high bias) and complexity to avoid overfitting (high variance) (Neal,

2019). Simpler models are evaluated first (Russell & Norvig, 2021).

3

For bank churn prediction, a binary classification problem, past studies overlap on

comparing k-nearest neighbours (KNN), decision tree (DT), support vector machine

(SVM) and random forest (RF), with random forest outperforming (Rahman & Kumar,

2020; de Lima Lemos et al., 2022).

All four models solve both classification and regression problems, and are suitable

for binary classification, however, while KNN and decision trees are interpretable,

SVM and random forest are opaque (Belle & Papantonis, 2021).

Comparing these four algorithms (Table 5), a first run with defaults using single 10-

fold cross-validation on the imbalanced training set (Table 6) shows KNN

underperforming on accuracy, SVM close to baseline, and random forest ahead on

AUC-ROC, the receiver operating characteristic area under the curve, the key

measure for imbalanced datasets.

K-Nearest Neighbors

KNN is a simple classifier that stores training examples and classifies new inputs by

identifying the k-most similar examples (measured by distance) and assigning the

majority label (Aha et al., 1991; Laaksonen & Oja, 1996; Witten et al., 2017). Fast,

flexible training is a key advantage over generalised models like decision tree, but

testing is slower due to distance calculations (Aha et al., 1991; Witten et al., 2017).

Hyperparameter k controls model complexity—too low overfits and too high

underfits—and is usually odd to avoid tied votes (Russell & Norvig, 2021). With

default k=1 underperforming, 10 repetitions of 10-fold cross-validation on the

imbalanced training set (Figures 12 and 13) found k=17 optimised 84% accuracy

(compared to 78.7%), and k=15+ returned AUC-ROC 0.81 (compared to 0.66). The

higher k=17 generalised better than k=5 found by Rahman & Kumar (2020), likely

4

due to preprocessing variations (one less feature) and cross-validation method (10%

hold out).

KNN should suit eight features and 9000 training samples, because it is

nonparametric (no assumptions about data distribution), and performs well with

abundant data in low dimensions (distance becomes less meaningful with the curse

of dimensionality) (Laaksonen & Oja, 1996; Russell & Norvig, 2021).

Decision Tree

Decision trees recursively split data on highest information gain—indicating the most

important attribute—until classification at a leaf node (Witten et al., 2017; Bell, 2020;

Charbuty & Abdulazeez, 2021; Russell & Norvig, 2021). Attribute importance

transparency is a key reason for using decision tree. Age was the most important,

with NumOfProducts second-most informative (Figure 15).

While decision trees handle large data sets well, unpruned trees overfit, therefore,

WEKA’s J48 (C4.5) algorithm prunes automatically (Witten et al., 2017; Bell, 2020).

The pruned 79-node tree with 42 leaves achieved 85% accuracy on the imbalanced

training set (Figure 14), indicating that older customers and those with more products

tend to stay, although Figures 8 and 9 show this is taken from relatively small sample

sizes. Pruning hyperparameter tests show increased pruning (0.25 to 0.1) improved

AUC-ROC slightly (0.793 to 0.806), while reducing to a 53-node tree with 29 leaves

that maintained Age and then NumOfProducts’ importance (Figures 16-19).

Support Vector Machine

SVM classifies data by finding the maximum margin hyperplane that separates

classes (Russell & Norvig, 2021). The hyperplane is equidistant between margins

defined by the support vectors—training points nearest the boundary—with a wider

5

margin providing more confidence in generalisation (Bell, 2020). By using support

vectors rather than storing all training points (like KNN) SVM resists overfitting

(Russell & Norvig, 2021).

Non-linear classification uses the “kernel trick” to map to higher dimensions (Bell,

2020). WEKA’s SVM, Platt’s (1999) Sequential Minimal Optimization (SMO), defaults

to PolyKernel.

The linear PolyKernel was faster than non-linear RBFKernel, with 9 million versus

457 million evaluations, but at equal 81.9% accuracy (Figures 22 and 23). However,

SVM underperformed, potentially struggling with imbalanced data (Figure 24)

(Rahman & Kumar, 2020).

Random Forest

Random forest is an ensemble of decision trees that extend decision tree bagging

(bootstrap aggregating) (Russell & Norvig, 2021). Bagging aggregates predictions

from k trees of N random examples, but because information gain often selects the

same root, random forest decreases correlation by randomly sampling attributes at

each split. They then predict by taking the majority vote (for classification) and

averaging (for regression).

While single decision trees require pruning to avoid overfitting, random forest does

not, and resists overfitting as more randomised trees are added, although

performance plateaus beyond a point (Breiman, 2001).

The default hyperparameters of k=100 trees and N=100% bag size (full 9000 training

set) achieved 0.83 AUC-ROC using 10x10-fold cross-validation across the

imbalanced training set (Figures 25, 26 and 27). Changing k and N did not improve

6

performance, so defaults were retained. While slower and less interpretable, random

forest has so far performed best.

EVALUATION

Training, Validation and Test

The dataset is assumed to be stationary, and independent and identically distributed

(i.i.d.), and the 10,000 was randomly split 90/10 into train and test sets from the

same distribution while maintaining the 20% churn ratio (Russell & Norvig, 2021; de

Lima Lemos et al., 2022). With 10% held out for testing, k-fold cross-validation

(k=10) was used on the training set for model selection and hyperparameter tuning

(Rahman & Kumar, 2020). This allowed each data point to be validated on a different

fold, while retaining the full 9000 examples for training. WEKA’s stratified cross-

validation ensured the churn ratio was consistent across folds (Witten et al., 2017).

To reduce variability, 10 runs of 10-fold cross-validation were averaged when tuning

KNN, decision tree and random forest in WEKA Experimenter (Witten et al., 2017; de

Lima Lemos et al., 2022). However, single 10-fold cross-validation was used for the

final model evaluation in WEKA Explorer as Experimenter does not support separate

test sets (Bouckaert et al., 2022).

Evaluation Metrics

Detailed in A.3.1, key evaluation metrics included build speed, accuracy, true positive

rate (recall), false positive rate, precision, F-measure, and AUC-ROC (University of

Essex Online, N.D.; Witten et al., 2017; Bouckaert et al., 2022). For imbalanced

classification, accuracy (higher is better) is less useful than AUC-ROC, with 0.5

random, 0.8 good, and 1.0 perfect.

7

Additionally, recall (true positive rate) is the percentage of correctly found positive

cases, with higher better. False positive rate is the percentage incorrectly predicted

as positive, with lower better. Precision is the percentage of correct positive

predictions, with higher better. F-measure balances precision and recall, with higher

better, and a maximum of one. Confusion matrices visualise model success through

high values in the diagonal.

Imbalanced Training Evaluation

On imbalanced data, the baseline of 79.6% just predicts the majority class (Table 9).

After previously tuning KNN’s hyperparameter k from 1 to 17, its AUC-ROC

exceeded the 0.8 boundary (from 0.659 to 0.808), overtaking decision tree’s tuned

pruning hyperparameter (which had increased AUC-ROC from 0.793 to 0.806). SVM

struggled at 0.565, excelling only at having the lowest minority class false positive

rate (Figure 20). Random forest, however, achieved the best AUC-ROC of 0.827

(Figure 25 and Table 9).

Tuned models generalised better, including improving KNN’s minority class recall.

However, SVM failed to fit the imbalanced boundary. Ultimately, random forest was

most robust.

Oversampled Training Evaluation

The “class imbalance problem” shows recall and precision, and thus F-measure,

generally performed better for majority than minority in imbalanced data (Table 9)

(Mohammed et al., 2020). Synthetic minority oversampling technique (SMOTE)

improved majority bias by oversampling training (not test) data to balance the

classes (Chawla et al., 2002). The data was then randomised (Figure 29).

8

After oversampling, accuracy dropped for KNN and SVM, but the minority and

majority metrics were more closely balanced, with minority typically performing much

better, although the majority class values sometimes decreased (Table 10).

Possibly due to dense synthetic samples, KNN performed slightly better at k=9

versus k=17 on oversampled data. Tuning decision tree pruning made minimal

difference, although 0.05 built a simpler tree than 0.1 (Tables 11 and 12). Crucially,

however, oversampling made numOfProducts a more important feature than Age

(Figure 37).

Random forest outperformed with 0.948 AUC-ROC and 88.24% accuracy. Decision

tree was second best, followed by KNN and SVM (Table 13). With AUC-ROC

significantly increased for all four models, balancing the training data improved

generalisation and minority class performance.

Test Set Results

Comparing test (Table 14) with training (Table 15) results, random forest maintained

robust performance on test with AUC-ROC of 0.828 (imbalanced) and 0.843

(oversampled) versus training at 0.827 (imbalanced) and 0.948 (oversampled). This

indicates good generalisation and avoidance of overfitting.

After oversampling, decision tree had the highest test accuracy at 85%, however, the

oversampled minority class recall improved at the cost of lower precision. The

oversampled training data increased the tree size, possibly resulting in overfitting,

although it was pruned more aggressively, which could have reduced test precision.

Oversampling reduced KNN’s test AUC-ROC and accuracy, but increased majority

class precision and minority class recall and F-measure. Oversampling made it

easier to detect minority examples, but also led to more false positives.

9

SVM consistently failed to generalise well in both training and test with the lowest

AUC-ROC for both imbalanced and oversampled data, and for imbalanced data it

favoured precision over recall for the minority class.

In summary, random forest generalised best with test performance matching strong

training results. With high accuracy, decision tree provided the second-best results.

DEPLOYMENT

Following CRISP-DM, this analysis demonstrated the feasibility of using machine

learning for ethical predictive churn modelling (Niakšu, 2015). Like EthiBank data,

the public dataset lacked some demographics, but demonstrated ethically evaluating

churn with only core banking data (Akturk, 2020). EthiBank’s 100,000+ customers

with 20% churn could also evaluate undersampling (randomly balancing churners

and non-churners) in addition to oversampling (Rahman & Kumar, 2020; de Lima

Lemos et al., 2022).

Both this analysis and published research confirm random forest’s top performance

for bank churn modelling (Rahman & Kumar, 2020; de Lima Lemos et al., 2022).

With cloud infrastructure, 100,000+ trees can train quickly using parallel processing

(Russell & Norvig, 2021).

An Application Programming Interface (API) can integrate predictions with

EthiBank’s customer management system to automate identifying high churn risk

customers for targeted retention campaigns (Bloch, 2006). Local Interpretable

Model-Agnostic Explanations (LIME) techniques can increase trust and

transparency, and corroborating random forest with highly transparent decision tree

results may help assure stakeholders (Belle & Papantonis, 2021).

10

Before full deployment, further real-world testing on EthiBank data with a pilot group

is advised. Ongoing monitoring tracks performance metrics to maintain effectiveness

(IBM, N.D.). Periodic retraining on new customer data maintains accuracy, although

if the focus is on high-value customers first, tweaks may be needed once a churn

threshold is achieved.

In summary, this study demonstrated using industry standards and transparent,

ethical machine learning to minimise churn and increase EthiBank’s revenue. Next

steps include further planning, costing and validation—but the concept shows strong

potential.

11

REFERENCES

Aha, D., Kibler, D., Albert M., & Quinian J. (1991) Instance-Based Learning

Algorithms 6: 37–66.

Akturk, M. (2020) Churn for Bank Customers. Available from:

https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers [Accessed 20

October 2023].

Bell, J. (2020) Machine Learning: Hands-On for Developers and Technical

Professionals. Wiley. DOI: https://doi.org/10.1002/9781119642183.

Belle, V. & Papantonis, I. (2021) Principles and Practice of Explainable Machine

Learning, Frontiers in Big Data. Frontiers Media S.A. DOI:

https://doi.org/10.3389/fdata.2021.688969.

Bloch, J. (2006) How to design a good API and why it matters 506–507. DOI:

https://doi.org/10.1145/1176617.1176622.

Bouckaert, R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A. & Scuse,

D. (2022) WEKA Manual for Version 3-8-6. Available from:

https://waikato.github.io/weka-wiki/documentation/ [Accessed 24 October 2023].

Breiman, L. (2001) Random Forests, Machine Learning 45: 5–32. DOI:

https://doi.org/10.1023/A:1010933404324.

Charbuty, B. & Abdulazeez, A. (2021) Classification Based on Decision Tree

Algorithm for Machine Learning, Journal of Applied Science and Technology

Trends 2(01): 20–28. DOI: https://doi.org/10.38094/jastt20165.

12

Chawla, N., Bowyer, K. and Kegelmeyer, W. (2002) SMOTE: Synthetic Minority

Over-sampling Technique, Journal of Artificial Intelligence Research 16: 321–357.

DOI: https://doi.org/10.1613/JAIR.953.

Duboue, P. (2020) The Art of Feature Engineering, The Art of Feature Engineering.

Cambridge University Press. DOI: https://doi.org/10.1017/9781108671682.003.

Frank, E., Hall, M., Witten, I. & Kaufmann, M. (2016) WEKA Workbench Online

Appendix for ‘Data Mining: Practical Machine Learning Tools and Techniques’.

Available from:

https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf [Accessed 5

September 2023].

Google (N.D.) Representation: Qualities of Good Features. Available from:

https://developers.google.com/machine-learning/crash-

course/representation/qualities-of-good-features [Accessed 23 October 2023].

IBM (N.D.) Planning Monitoring and Maintenance - IBM Documentation. Available

from: https://www.ibm.com/docs/en/spss-modeler/18.2.0?topic=deployment-

planning-monitoring-maintenance [Accessed 29 October 2023].

Khoshgoftaar, T., Seiffert, C., Hulse, J., Napolitano, A., & Folleco, A. (2007) Learning

with Limited Minority Class Data. DOI: https://doi.org/10.1109/ICMLA.2007.76.

Laaksonen, J. & Oja, E. (1996) Classification with Learning k-Nearest Neighbors,

Proceedings of International Conference on Neural Networks (ICNN’96) 3: 1480–

1483. DOI: https://doi.org/10.1109/ICNN.1996.549118.

13

de Lima Lemos, R.A., Silva, T.C. & Tabak, B.M. (2022) Propension to customer

churn in a financial institution: a machine learning approach, Neural Computing and

Applications 34: 11751–11768. DOI: https://doi.org/10.1007/s00521-022-07067-x.

Mohammed, R., Rawashdeh, J. & Abdullah, M. (2020) Machine Learning with

Oversampling and Undersampling Techniques: Overview Study and Experimental

Results, 2020 11th International Conference on Information and Communication

Systems, ICICS 2020 243–248. DOI:

https://doi.org/10.1109/ICICS49469.2020.239556.

Neal, B. (2019) On the Bias-Variance Tradeoff : Textbooks Need an Update. MSc

thesis. Université de Montréal. DOI:

https://doi.org/https://doi.org/10.48550/arXiv.1912.08286.

Niakšu, O. (2015) CRISP Data Mining Methodology Extension for Medical Domain,

Baltic J Modern Computing 3(2): 92–109.

Platt, J.C. (1999) Fast Training of SVMs Using Sequential Minimal Optimization, in

Advances in Kernel Methods 185–208.

Rahman, M. & Kumar, V. (2020) Machine Learning Based Customer Churn

Prediction In Banking, 2020 4th International Conference on Electronics,

Communication and Aerospace Technology (ICECA) 1196–1201. DOI:

https://doi.org/10.1109/ICECA49313.2020.9297529.

Russell, S. & Norvig, P. (2021) Artificial Intelligence: A Modern Approach, Global

Edition. 4th ed. Pearson Education, Limited.

University of Essex Online (N.D.) Evaluation of Learning Systems. Available from:

https://www.my-

14

course.co.uk/Computing/AI/UAI/UAI%20Lecturecast%205/content/index.html#/

[Accessed 7 October 2023].

Witten, I.H., Frank, E. & Pal, C. (2017) Data Mining: Practical Machine Learning

Tools and Techniques. 4th ed. Elsevier.

15

APPENDIX

A.1 Dataset

https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers

TABLE 1 | Raw dataset attributes and preprocessed type and action. (14 original
attributes, with 8 retained features and 1 output class)

Attribute Description Type Preprocessing

RowNumber 1 to 10000 Numeric Removed

CustomerId Unique random ID Numeric Removed

Surname Last name String Removed

CreditScore Credit score Numeric

Geography Germany or France Nominal Removed

Gender Male or Female Nominal Removed

Age Customer age Numeric

Tenure Years with bank Numeric

Balance Customer bank balance Numeric

NumOfProducts Number bank products Nominal numericToNominal

HasCrCard Credit card (1 = yes) Nominal (Binary) numericToBinary

IsActiveMember Active (1 = yes) Nominal (Binary) numericToBinary

EstimatedSalary Salary estimate (USD) Numeric

Exited Class (1 = churned) Nominal (Binary) numericToBinary

https://www.kaggle.com/datasets/mathchi/churn-for-bank-customers

16

TABLE 2 | WEKA's min, max, mean, and standard deviation of 10,000 full dataset

Feature Name Min Max Mean
Standard
Deviation

CreditScore 350 850 650.529 96.653

Age 18 92 38.922 10.488

Tenure 0 10 5.013 2.892

Balance 0 250,898.09 76,485.889 62,397.405

NumOfProducts 1 4 1.53 0.582

HasCrCard 0 1 0.706 0.456

IsActiveMember 0 1 0.515 0.5

EstimatedSalary 11.58 199,992.48 100,090.24 57,510.493

Exited 0 1 0.204 0.403

TABLE 3 | WEKA's min, max, mean, and standard deviation of 9000 training set

Feature Name Min Max Mean
Standard
Deviation

CreditScore 350 850 651.326 96.35

Age 18 92 38.875 10.449

Tenure 0 10 5.014 2.893

Balance 0 250,898.09 76,591.219 62,404.091

NumOfProducts 1 4 1.53 0.58

HasCrCard 0 1 0.705 0.456

IsActiveMember 0 1 0.514 0.5

EstimatedSalary 11.58 199,992.48 99,988.897 57,495.602

Exited 0 1 0.204 0.403

TABLE 4 | WEKA's min, max, mean, and standard deviation of 1000 test set

Feature Name Min Max Mean
Standard
Deviation

CreditScore 358 850 643.355 99.105

Age 18 79 39.343 10.83

Tenure 0 10 5.003 2.887

Balance 0 238,387.56 75,537.918 62,360.382

NumOfProducts 1 4 1.534 0.594

HasCrCard 0 1 0.707 0.455

IsActiveMember 0 1 0.528 0.499

EstimatedSalary 91.75 199,454.37 101,002.324 57,665.143

Exited 0 1 0.203 0.402

17

FIGURE 1 | Train / Test Split (Python and pandas)

FIGURE 2 | Churn and test imbalance ratios

FIGURE 3 | 9000 training instances with 80/20 majority/minority class ratio

18

FIGURE 4 | 1000 test instances with 80/20 majority/minority class ratio

FIGURE 5 | Raw dataset before conversion (class is numeric)

19

FIGURE 6 | Class after binarization using NumericToBinary (must change class to
“No class” first then change back, other fields can be converted directly)

FIGURE 7 | NumOfProducts as a numeric

20

FIGURE 8 | NumOfProducts after Nominalisation

FIGURE 9 | Age

21

A.2 Modelling Outputs

A.2.1 Algorithms

TABLE 5 | Model and WEKA algorithm

Model WEKA Description

k-nearest neighbour (KNN) IBk Instance-Based learner

decision tree (DT) J48 C4.5

support vector machine (SVM) SMO Sequential Minimal Optimisation

random forest (RF) RandomForest Random forest

A.2.2 Initial Sense Check with Default Parameters

TABLE 6 | Initial sense check using single 10-fold cross-validation with imbalanced
training set (9000) and default model parameters (majority class 0=retained; minority
class 1=churned)

Model Build
(Sec)

Accuracy Kappa Class TP
Rate

FP
Rate

Precision Recall F-
Measure

ROC
Area

Baseline 0.01 79.62% 0 0 1.000 1.000 0.796 1.000 0.887 0.499

 1 0.000 0.000 ? 0.000 ? 0.499

KNN 0.01 78.31% 0.3226 0 0.868 0.550 0.860 0.868 0.864 0.659

 1 0.450 0.132 0.467 0.450 0.458 0.659

DT 0.17 85.07% 0.4417 0 0.967 0.603 0.862 0.967 0.912 0.793

 1 0.397 0.033 0.753 0.397 0.520 0.793

SVM 1.42 81.91% 0.1888 0 0.994 0.864 0.818 0.994 0.897 0.565

 1 0.136 0.006 0.853 0.136 0.234 0.565

RF 2.31 85.04% 0.4595 0 0.957 0.565 0.869 0.957 0.911 0.827

 1 0.435 0.043 0.720 0.435 0.542 0.827

22

A.2.3 Baseline (ZeroR)

FIGURE 10 | Baseline (ZeroR) (default model parameters, single 10-fold cross-
validation, imbalanced training set)

A.2.4 K-Nearest Neighbors (IBk)

FIGURE 11 | KNN (default model parameters, single 10-fold cross-validation,
imbalanced training set)

23

FIGURE 12 | KNN—Accuracy—comparing k = 1, 5, 9, 15, 17, 19, 29, with 17 best for
accuracy. v indicates that against k = 1 at 5% statistical significance, the others are
statistically better. (10x10-fold cross-validation, imbalanced training set)

FIGURE 13 | KNN—AUC ROC—comparing k = 1, 5, 9, 15, 17, 19, 29, with 15 and
above best for AUC ROC. v indicates that against k = 1 at 5% statistical significance,
the others are statistically better. (10x10-fold cross-validation, imbalanced training
set)

24

A.2.5 Decision Tree (J48)

FIGURE 14 | Decision tree (J48) (default hyperparameters, single 10-fold cross-
validation, imbalanced training set)

25

FIGURE 15 | Decision tree showing Age and then NumOfProducts as most important
attributes. (default hyperparameters, single 10-fold cross-validation, imbalanced
training set)

FIGURE 16 | Decision tree—Accuracy—comparing confidenceFactor default 0.25
(smaller value prune mores) (10x10-fold cross-validation, imbalanced training set)

26

FIGURE 17 | Decision tree—AUC-ROC—comparing confidenceFactor default 0.25
(smaller value prunes more) (10x10-fold cross-validation, imbalanced training set)

FIGURE 18 | Decision tree—AUC-ROC—confidenceFactor (smaller value prunes
more—0.1) (10-fold cross-validation, imbalanced training set)

27

FIGURE 19 | Decision tree after further pruning with hyperparameter tuning
(confidenceFactor 0.1) reduced nodes to 53 and leaves to 29 (10-fold cross-
validation, imbalanced training set)

A.2.6 Support Vector Machine (SMO)

FIGURE 20 | SMV (SMO) (default model parameters, single 10-fold cross-validation,
imbalanced training set)

28

FIGURE 21 | SVM using Linear Kernel. Attribute weights. (single 10-fold cross-
validation, imbalanced training set)

FIGURE 22 | SVM using Linear Kernel. Fast to build and lower number of kernel
evaluations for the same accuracy. (single 10-fold cross-validation, imbalanced
training set)

29

FIGURE 23 | SVM using RBF Kernel. Significant time to build and very high number
of kernel evaluations for the same accuracy. (single 10-fold cross-validation,
imbalanced training set)

30

FIGURE 24 | SVM Boundary Visualiser between two highest information gain
attributes, Age and NumOfProducts (numeric), does not display a boundary
(imbalanced trainng set)

31

A.2.7 Random Forest (RandomForest)

FIGURE 25 | Random forest (RandomForest) (default model parameters, single 10-
fold cross-validation, imbalanced training set)

FIGURE 26 | Random forest—Accuracy—N and k hyperparameter comparison with
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, imbalanced training set)

32

FIGURE 27 | Random forest—AUC ROC—N and k hyperparameter comparison with
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, imbalanced training set)

A.3 Evaluation Outputs

A.3.1 Evaluation Matrix and Metrics

For classification (categorical) outputs, the following metrics and explanations come

from the University of Essex Online (N.D.), and WEKA’s Witten et al. (2017) and

Bouckaert et al. (2022).

A.3.1.1 Kappa Statistic

• Kappa statistic compares model accuracy to random baseline.

• Higher is better as values near 0 means model is no better than random.

A.3.1.2 Confusion Matrix

TABLE 7 Confusion Matrix

 TRUE CLASS

PREDICTED
CLASS

 Positive Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

33

• Higher numbers on the diagonal (TP and TN), with lower FP and FN, visually

indicates higher success of the algorithm.

A.3.1.3 Accuracy

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)

• For WEKA Explorer: Correctly Classified Instances

• Higher accuracy is better

• Not useful for imbalanced datasets

A.3.1.4 Precision

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• Percentage of positive predictions that were correct

• Higher precision is better

• Correctly tagged divided by tagged

A.3.1.5 Recall (True Positive (TP) rate)

𝑇𝑃 𝑅𝑎𝑡𝑒 = 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• Percentage of correctly found positive cases

• Higher is better

• Correctly tagged divided by should be tagged

• In WEKA this is the same as TP rate

A.3.1.6 False Positive (FP) Rate

𝐹𝑃 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

• FP rate in WEKA is FP divided by total negatives (FP+TN)

34

• Percentage incorrectly predicted as positive

• Lower is better

A.3.1.7 F-Measure

𝐹𝛽 = (1 + 𝛽2) ×
𝑃 × 𝑅

𝛽2 𝑃 + 𝑅

• Higher F-measure means better balance of precision and recall.

• Higher is better, maximum is 1.

• Model with higher precision, recall and F1 is better (especially for minority

positive class in an imbalanced dataset.)

• 𝐹𝛽=1 measure equally favours both precision and recall

• 𝛽 specifies if weight is applied more to precision or recall.

A.3.1.8 AUC-ROC

• Receiver Operating Characteristic Area Under the Curve

• AUC-ROC ranges from 0.0 to 1.0, higher is better

• Model performance should be above AUC-ROC

• AUC of 0.0 is 100% wrong; 1.0 is 100% correct; 0.5 is no better than chance

• A good model AUC above 0.8

• One of the best metrics for an imbalanced dataset as evaluates both positive

and negative classes

• Measures between the True Positive (TP) Rate on the y-axis and the False

Positive (FP) Rate on the x-axis

35

A.4.1 Imbalanced Training Evaluation

TABLE 8 | Hyperparameter selection (imbalanced training set)

Model Hyperparameter WEKA Name Default Tuned Description

KNN k (k-nearest) KNN 1 17 17 was best AUC-ROC and accuracy

DT Pruning level confidenceFactor 0.25 0.1
0.1 had slightly better AUC-ROC and created
simpler tree (smaller with fewer leaves)

SVM Kernel kernel PolyKernel PolyKernel
Compared to RBFKernel which was slower
with same results.

RF k (trees in RF) numIterations 100 100 Default was best. Tried 50, 100, and 200.

N (bag % of
training set)

bagSizePercent 100 100 Default was best. Tried 100 and 75.

TABLE 9 | Imbalanced training evaluation using single 10-fold cross-validation with
imbalanced training set (9000) and tuned hyperparameters (KNN k = 17, DT
confidenceFactor = 0.1) (majority class 0=retained; minority class 1=churned)

Model Build
(Sec)

Accuracy Class TP Rate
(Recall)

FP Rate Precision F-Measure ROC Area

Baseline 0.01 79.62% 0 1.000 1.000 0.796 0.887 0.499

 1 0.000 0.000 ? ? 0.499

KNN (17) 0 83.88% 0 0.976 0.697 0.845 0.906 0.808

 1 0.303 0.024 0.763 0.434 0.808

DT (0.1) 0.17 85.41% 0 0.972 0.605 0.863 0.914 0.806

 1 0.395 0.028 0.780 0.525 0.806

SVM 1.42 81.91% 0 0.994 0.864 0.818 0.897 0.565

 1 0.136 0.006 0.853 0.234 0.565

RF 2.31 85.04% 0 0.957 0.565 0.869 0.911 0.827

 1 0.435 0.043 0.720 0.542 0.827

36

A.4.1.1 K-Nearest Neighbor

FIGURE 28 | KNN (k=17, single 10-fold cross-validation, imbalanced training set)

37

A.5.1 Oversampled (Balanced) Training Evaluation

FIGURE 29 | After SMOTE, creates a balanced dataset. Randomised applied next.

TABLE 10 | Oversampled balanced training evaluation using single 10-fold cross-
validation with balanced training set (14,331) and same hyperparameters as
imbalanced (majority class 0=retained; minority class 1=churned)

Model Build
(Sec)

Accuracy Class TP Rate
(Recall)

FP Rate Precision F-Measure ROC Area

Baseline 0 50.00% 0 1.000 1.000 0.500 0.667 0.500

 1 0.000 0.000 ? ? 0.500

KNN (17) 0 81.15% 0 0.769 0.146 0.840 0.803 0.894

 1 0.854 0.231 0.787 0.819 0.894

DT (0.1) 0.19 88.03% 0 0.930 0.169 0.846 0.886 0.925

 1 0.831 0.070 0.922 0.874 0.925

SVM 14.92 78.34% 0 0.790 0.224 0.780 0.785 0.783

 1 0.776 0.210 0.787 0.782 0.783

RF 3.4 88.24% 0 0.905 0.140 0.866 0.885 0.948

 1 0.860 0.095 0.900 0.880 0.948

38

TABLE 11 | New hyperparameter selections (oversampled balanced training set)

Model Hyperparameter WEKA Name Default Tuned Description

KNN k (k-nearest) KNN 1 9

9 was best accuracy and just slightly lower
AUC-ROC to 17 *(0.891 instead of 0.894)
Precision, recall and F-measure were all
better.

DT Pruning level confidenceFactor 0.25 0.05
0.05 had slightly better AUC-ROC but
matched 0.1 on accuracy. It did create a
simpler tree (smaller with fewer leaves)

SVM Kernel kernel PolyKernel PolyKernel RBFKernel was significantly slower.

RF k (trees in RF) numIterations 100 100
Default was best for AUC-ROC and only .05
better for 200. For simplicity and speed
keeping 100. Tried 50, 100, and 200.

N (bag % of
training set)

bagSizePercent 100 100 Default was best. Tried 100 and 75.

TABLE 12 | Oversampled balanced training evaluation using single 10-fold cross-
validation with balanced training set (14,331) and new hyperparameters for balanced
training set (majority class 0=retained; minority class 1=churned)

Model Build
(Sec)

Accuracy Class TP Rate
(Recall)

FP Rate Precision F-Measure ROC Area

Baseline 0 50.00% 0 1.000 1.000 0.500 0.667 0.500

 1 0.000 0.000 ? ? 0.500

KNN (9) 0 81.53% 0 0.777 0.146 0.842 0.808 0.891

 1 0.854 0.231 0.787 0.819 0.891

DT (0.05) 0.19 88.03% 0 0.926 0.166 0.848 0.886 0.926

 1 0.834 0.074 0.919 0.875 0.926

SVM 14.92 78.34% 0 0.790 0.224 0.780 0.785 0.783

 1 0.776 0.210 0.787 0.782 0.783

RF 3.4 88.24% 0 0.905 0.140 0.866 0.885 0.948

 1 0.860 0.095 0.900 0.880 0.948

TABLE 13 | Comparison between imbalanced and oversampled balanced training
sets with hypertuned parameters (KNN k = 17 or 9, DT confidenceFactor = 0.1 or
0.05)

Model

IMBALANCED
Accuracy
(KNN = 17,
DT = 0.1)

OVERSAMPLED
Accuracy
(KNN = 17,
DT = 0.1)

OVERSAMPLED
Accuracy
(KNN = 9,
DT = 0.05)

IMBALANCED
ROC Area
(KNN = 17,
DT = 0.1)

OVERSAMPLED
ROC Area
(KNN = 17,
DT = 0.1)

OVERSAMPLED
ROC Area
(KNN = 9,
DT = 0.05

Baseline 79.62% 50.00% 50.00% 0.499 0.500 50.00%

KNN 83.88% 81.15% 81.53% 0.808 0.894 0.891

DT 85.41% 88.03% 88.03% 0.806 0.925 0.926

SVM 81.91% 78.34% 78.34% 0.565 0.783 0.783

RF 85.04% 88.24% 88.24% 0.827 0.948 0.948

39

A.5.1.1 K-Nearest Neighbor

FIGURE 30 | KNN with hyperparameter k=17 (10-fold cross-validation, balanced
training set)

FIGURE 31 | KNN—Accuracy—hyperparameter comparison. 9 had highest accuracy
(10x10-fold cross-validation, balanced training set)

40

FIGURE 32 | KNN—AUC-ROC—hyperparameter comparison. 9+ had highest AUC-
ROC (10x10-fold cross-validation, balanced training set)

FIGURE 33 | KNN with hyperparameter k=9 (10-fold cross-validation, balanced
training set)

41

A.5.1.2 Decision Tree

FIGURE 34 | Decision tree —Accuracy—hyperparameter comparison. 0.1 and 0.05
had highest accuracy (10x10-fold cross-validation, balanced training set)

FIGURE 35 | Decision tree —AUC-ROC—hyperparameter comparison. 0.05 had
highest AUC-ROC (10x10-fold cross-validation, balanced training set)

42

FIGURE 36 | Decision tree with 149 nodes and 76 leaves (confidenceFactor=0.05,
single 10-fold cross-validation, oversampled balanced training set)

FIGURE 37 | Decision tree showing NumOfProducts and then Age as most important
attributes. (confidenceFactor=0.05, single 10-fold cross-validation, oversampled
balanced training set)

43

A.5.1.4 Random Forest

FIGURE 38 | Random forest—Accuracy—N and k hyperparameter comparison with
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, oversampled balanced training set)

FIGURE 39 | Random forest—AUC-ROC—N and k hyperparameter comparison with
(N, k): (default = 100, 100), (100, 50), (100, 200), (75, 100). (10x10-fold cross-
validation, oversampled balanced training set)

44

A.6.1 Test Set Results

A.6.1.1 TEST SET RESULTS

TABLE 14 | TEST SET RESULTS COMPARISON SUMMARY

Model Balance Accuracy Class TP Rate
(Recall)

FP Rate Precision F-Measure ROC Area

KNN (17) Imbalanced 84.1% 0 0.971 0.670 0.851 0.907 0.809

 1 0.330 0.029 0.744 0.457 0.809

DT (0.1) Imbalanced 85.8% 0 0.980 0.621 0.861 0.917 0.802

 1 0.379 0.020 0.828 0.520 0.802

SVM Imbalanced 82.5% 0 0.996 0.847 0.822 0.901 0.574

 1 0.153 0.004 0.912 0.262 0.574

RF Imbalanced 84.9% 0 0.950 0.547 0.872 0.909 0.828

 1 0.453 0.050 0.697 0.549 0.828

KNN (9)
Oversampled

74.2% 0 0.758 0.320 0.903 0.824 0.791

 1 0.680 0.242 0.417 0.517 0.791

DT (0.05)
Oversampled

85% 0 0.934 0.478 0.885 0.908 0.803

 1 0.522 0.066 0.667 0.586 0.803

SVM
Oversampled

74.7% 0 0.789 0.419 0.881 0.833 0.685

 1 0.581 0.211 0.581 0.483 0.685

RF
Oversampled

83.7% 0 0.907 0.438 0.890 0.899 0.843

 1 0.562 0.093 0.606 0.583 0.843

45

A.6.1.2 Imbalanced

A.6.1.2.1 K-Nearest Neighbour: TEST RESULT (Imbalanced)

FIGURE 40 | k-Nearest Neighbor: TEST RESULT (Imbalanced, k=17)

46

A.6.1.2.1 Decision Tree: TEST RESULT (Imbalanced)

FIGURE 41 | Decision tree: TEST RESULT (Imbalanced, confidenceFactor = 0.1)

47

A.6.1.2.1 Support Vector Machine: TEST RESULT (Imbalanced)

FIGURE 42 | Support Vector Machine: TEST RESULT (Imbalanced)

48

A.6.1.2.1 Random Forest: TEST RESULT (Imbalanced)

FIGURE 43 | Random forest: TEST RESULT (Imbalanced)

49

A.6.1.3 Oversampled (Balanced)

A.6.1.3.1 K-Nearest Neighbor: TEST RESULT (Oversampled)

FIGURE 44 | k-Nearest Neighbor: TEST RESULT (Oversampled, k=9)

50

A.6.1.3.2 Decision Tree: TEST RESULT (Oversampled)

FIGURE 45 | Decision tree: TEST RESULT (Oversampled, confidenceFactor = 0.05)

51

A.6.1.3.3 Support Vector Machine: TEST RESULT (Oversampled)

FIGURE 46 | Support Vector Machine: TEST RESULT (Oversampled)

52

A.6.1.3.4 Random Forest: TEST RESULT (Oversampled)

FIGURE 47 | Random forest: TEST RESULT (Oversampled)

53

A.7.1 Comparison

A.7.1.1 TRAINING COMPARISON SUMMARY

TABLE 15 | TRAINING COMPARISON SUMMARY

Model Balance Accuracy Class TP Rate
(Recall)

FP Rate Precision F-Measure ROC Area

KNN (17) Imbalanced 83.88% 0 0.976 0.697 0.845 0.906 0.808

 1 0.303 0.024 0.763 0.434 0.808

DT (0.1) Imbalanced 85.41% 0 0.972 0.605 0.863 0.914 0.806

 1 0.395 0.028 0.780 0.525 0.806

SVM Imbalanced 81.91% 0 0.994 0.864 0.818 0.897 0.565

 1 0.136 0.006 0.853 0.234 0.565

RF Imbalanced 85.04% 0 0.957 0.565 0.869 0.911 0.827

 1 0.435 0.043 0.720 0.542 0.827

KNN (9)
Oversampled

81.53% 0 0.777 0.146 0.842 0.808 0.891

 1 0.854 0.231 0.787 0.819 0.891

DT (0.05)
Oversampled

88.03% 0 0.926 0.166 0.848 0.886 0.926

 1 0.834 0.074 0.919 0.875 0.926

SVM
Oversampled

78.34% 0 0.790 0.224 0.780 0.785 0.783

 1 0.776 0.210 0.787 0.782 0.783

RF
Oversampled

88.24% 0 0.905 0.140 0.866 0.885 0.948

 1 0.860 0.095 0.900 0.880 0.948

A.7.1.2 Other Research

FIGURE 48 | de Lima Lemos et.al with balanced dataset using AUC-ROC for training

(de Lima Lemos et al., 2022)

54

FIGURE 49 | Rahman & Kumar with imbalanced dataset—accuracy before and after
oversampling

(Rahman and Kumar, 2020)

